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Goals and Description

LIGO, which stands for the Laser Interferometer Gravitational-wave Observatory, consists of two large-scale detectors
situated 3,002 kilometers apart in Livingston, Louisiana, and Hanford, Washington. This large-scale physics experiment
measures the effects of gravitational waves from various astronomical events on beams of light passed through each facility’s
perpendicular 4-kilometer arms (Figure 1), revealing the nature of the phenomena originating the waves.

The measurement of gravitational waves by the LIGO observatories is made possible by our knowledge of general
relativity, in which gravity is explained as the effect of the curvature of spacetime by different masses. The movement of massive
objects causes changes in spacetime, which ripple outwards as gravitational waves. Because gravitational waves stretch and strain
spacetime orthogonally to the direction in which they are propagating, their magnitude can be determined by measuring the
difference between the lengths of two perpendicular, equally long objects. Each LIGO observatory monitors the minute changes
in distance between massive mirrors suspended in both arms and uses the interference patterns of the light bounced back and
forth between them to provide information on the direction and magnitude of gravitational waves (Abbott, 2009). Because the
gravitational disturbances are so small in magnitude after travelling up to several billion lightyears to reach the Hanford and
Livingston observatories, the instruments must be extremely sensitive in order to detect gravitational wave strains smaller than

one part in 1021,
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Figure 1: A basic interferometer [1]

While the Advanced LIGO detectors have utilized improvements such as stronger lasers and more sophisticated optics
systems, heightening sensitivity enough to detect a change in arm length 1/10,000 the width of a proton (Abbott,), gravitational
wave signals are still very faint compared to the environmental noise picked up from nearby traffic, environmental disturbances,
and even ringing phones (Berger, 2018). As a result, developing the technology to unbury gravitational signals from the
surrounding noise is just as important in characterizing wave sources as ensuring that the detectors themselves are sensitive
enough to pick up the signals. Separating wave signals from noise is possible when well-defined signal models are available for
the wave transient, but separating an un-modelled signal from noise necessitates being able to characterize the noise. The best
understood sources, such as inspiraling neutron star pairs, have accurate computer models and predictable effects, allowing us to
easily extract the GW signal, while less-understood sources such as supernovae explosions have only been modelled imperfectly,
if at all. For this reason, BayesWave puts as much emphasis on modelling noise as modelling signals (Cornish, 2015).

Gaussian noise is relatively simple to model and isolate from other signals, as it is stationary and purely random. The

noise picked up by the LIGO detectors, however, is difficult because of its non-Gaussian and non-stationary nature. Whereas



Gaussian noise would be purely random, detector noise is more structured and shows more variance in power for different
frequencies, an example of which can be seen in Figure 2 below where actual LIGO noise data is represented by the irregular
gray line. Glitches, which are short bursts of noise, introduce even more variations that also have to be included in the noise
model. BayesWave is able to take detector data and express it as a wavelet transform, or sequence of wavelets, as represented by
the solid black line in Figure 2. A wavelet is a mathematical function representing a wave-like oscillation that begins and ends at
zero, with an average value of zero. Wavelets allow us to describe signals with a relatively small amount of information, since a
signal can be expressed as a series of the same wavelet function with different coefficients that shift and scale each copy of the
wavelet. BayesWave, in particular, models instrumental glitches and gravitational wave (GW) bursts as a series of Morlet-Gabor
wavelets, a form of tapered sine wave (Figure 3). Ultimately, each signal will be modelled as a linear combination of a GW

signal, Gaussian noise, and glitches.
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Figure 2: Sound curve for glitch model of LIGO data

Figure 3: Morlet-Gabor wavelet

To test the probability of a signal being a gravitational wave or a glitch, we must establish a prior, or initial guess, of

the amplitude of the wavelets, which doesn’t take into consideration the values of our observed data. We can express the prior in



terms of the signal-to-noise ratio (SNR) of the wavelet. From Cornish et. al. (2015) we see that BayesWave expresses the glitch

amplitude prior as
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Both priors peak where SNR = SNR+, so changing the value of the parameter SNR+ changes the value of the glitch and signal
prior peaks.

Using the prior distributions and a likelihood function which expresses the likelihood of each parameter value for a

given sample of data, BayesWave can compute the posterior distribution function, which is defined as
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where p(hls, M) is the prior distribution for the signal or noise model M as defined in equations (1) and (2), p(slh, M) is the
likelihood function, and p(s|M) is the evidence for the model M. BayesWave uses the posterior distribution to test modelled data
samples against and calculate the probability of the data corresponding to one of the following three models: Gaussian noise
alone, Gaussian noise with glitches, or Gaussian noise with a GW signal. BayesWave can then use those probabilities to guess
whether each sample of data contains noise, glitches, or a gravitational signal from a particular source. BayesWave generates
helpful visualizations of the signal model (Figure 4) and and signal evidence (Figure 5) for each sample of data, as well as a

skymap of the signal’s possible source location (Bécsy, 2017), as in Figure 6 below.
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Figure 4: Reconstructed signal model from Hanford, WA observatory
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Figure 5: Graph of evidence for signal [3]

75t

=7h"
Figure 6: Probability density function of GW source location represented as a skymap

The goal of my research involves injecting binary black hole waveforms to LIGO noise and running BayesWave with
different combinations of amplitude and signal prior peaks to determine what combination of parameters allows the algorithm to
do the best job of separating noise from gravitational signal. By using various data collection, analysis, and statistical methods, I

can determine which combination of parameters leads to the best results in the classification of LIGO data as noise or signal.

Methodology

To run the BayesWave pipeline on many signals at once, I use a workload management software system that allows me
to queue jobs in batches, or large groups without having to submit each iteration of the algorithm by hand myself. For each
parameter combination, BayesWave is run on two sets of detector data. The first set is LIGO noise injected with binary black
hole (BBH) signals, and the second contains only noise or possibly a glitch, which refers to a short, distinct burst of noise. Once
BayesWave finishes running on a job, it will create an output file containing values for predicted signal, glitch, and noise
likelihoods. Because I know what sort of GW signal, noise, or glitches are in the signal data I am running BayesWave on, I can

compare the actual contents of the signal to what BayesWave guesses they contain, and compare the accuracy of the BayesWave



algorithm over each combination of amplitude and signal prior peaks using various statistical measures. Ideally, BayesWave will
classify binary black hole data as containing a GW signal, and the data not containing a signal injection as a glitch or noise.

To determine the success of BayesWave in classifying data, I will first create a confusion matrix for each parameter
combination. A confusion matrix is a table comparing how many samples are actually in each class with which samples the
classifier predicted to be in each class— the classes, in this case, being signal, glitch, or noise. From the confusion matrix we can
very quickly and visually assess the success of the classifier, BayesWave, and get counts for true positives, false positives, true
negatives, and false negatives, measures which are foundational building blocks used to evaluate classification models, for each
class. In a classifier where one class is defined as the positive class, a true positive is an outcome where the classifier predicts the
positive class correctly, and a false positive is an outcome where the classifier predicts the positive class incorrectly. Similarly,
the classifier correctly predicting that the positive class is not the case is a true negative, and predicting any class other than the
positive class incorrectly is a false negative. For example, where the positive class is defined as data containing a GW signal,
correctly identifying a signal would be a true positive, classifying noise as a signal would be a false positive, correctly identifying
noise or glitches containing no signal would be a true negative, and classifying a signal as noise alone would be a false negative.
Using the values in each confusion matrix, I will compute the F1 score from the results of each parameter combination. The F1

score is a metric that computes the success of a classifier with the formula

Precision*Recall

= Z(Precisian+Recall)'

In other words, the F1 score is a balance between precision and recall scores for a classifier, where precision calculates the
percentage of results the algorithm correctly classifies (see Equation 4), and recall calculates the percentage of relevant instances

the algorithm is able to identify in a dataset (Equation 5).

true positives

recision = = T
p true positives + false positives

true positives

recall = = -
true positives + false negatives

Relevance and Uniqueness

The LIGO Scientific Collaboration (LSC) seeks to detect and characterize very powerful events using gravitational
waves rather than electromagnetic radiation, which has historically been the most used method of obtaining information about the
cosmos. LIGO gives scientists a completely new, unique way of observing the universe’s various phenomena, especially those
that aren’t easily studied using electromagnetic radiation, which includes visible light, X-rays, etc., particularly black holes.
While Einstein’s general theory of relativity was published in 1916, the detection of gravitational waves confirmed the last non-
experimentally verified prediction of his theory. Parameter estimation and gravitational transient modelling is a logical next step
after detecting and collecting data from LIGO, and the modelling and isolating of gravitational wave signals from glitches and

noise is an important step in determining the characteristics of the astronomical events LIGO studies.
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Progress to date

While there are no specific research methods courses for Computer Science, I have taken Artificial Intelligence and
Machine Learning, which both have given me the background to understand the BayesWave algorithm better as well as teaching
me valuable data analysis and statistical tools. Additionally I am in the progress of taking Data Mining and Visualization, which
has further emphasized data manipulation, analysis, and visualization techniques. [ am also taking Mathematical Modelling in
Biology, and I have completed Research Pro-Seminar which is required by Honors.

I began my research during the Fall semester of 2017, and up until Fall of 2018 I worked on running and
troubleshooting BayesWave jobs. Ultimately I would like to run BayesWave on sixteen amplitude prior and signal prior peak
combinations, but since BayesWave is computationally expensive and often requires troubleshooting, I was only been able to
collect, analyze, and visualize preliminary SNR results on 8 parameter combinations from the beginning of my work to Fall of
2018. Since then I have updated to a newer version of BayesWave and have been rerunning jobs, while continuing to explore and
perform analysis on the sets of data resulting from my work with the older version of BayesWave. This analysis has included
creating graphs of the distribution and mean of signal-to-glitch ratio, as well as percentage of jobs that resulted in positive signal-
to-glitch ratios, for each parameter combination. In addition to the computing part of my position, I presented an overview of my

work with BayesWave at an American Physical Society poster session during their April 2018 meeting.



